Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Nat Commun ; 15(1): 2652, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531902

RESUMO

Tomosyns are widely thought to attenuate membrane fusion by competing with synaptobrevin-2/VAMP2 for SNARE-complex assembly. Here, we present evidence against this scenario. In a novel mouse model, tomosyn-1/2 deficiency lowered the fusion barrier and enhanced the probability that synaptic vesicles fuse, resulting in stronger synapses with faster depression and slower recovery. While wild-type tomosyn-1m rescued these phenotypes, substitution of its SNARE motif with that of synaptobrevin-2/VAMP2 did not. Single-molecule force measurements indeed revealed that tomosyn's SNARE motif cannot substitute synaptobrevin-2/VAMP2 to form template complexes with Munc18-1 and syntaxin-1, an essential intermediate for SNARE assembly. Instead, tomosyns extensively bind synaptobrevin-2/VAMP2-containing template complexes and prevent SNAP-25 association. Structure-function analyses indicate that the C-terminal polybasic region contributes to tomosyn's inhibitory function. These results reveal that tomosyns regulate synaptic transmission by cooperating with synaptobrevin-2/VAMP2 to prevent SNAP-25 binding during SNARE assembly, thereby limiting initial synaptic strength and equalizing it during repetitive stimulation.


Assuntos
Proteínas SNARE , Proteína 2 Associada à Membrana da Vesícula , Animais , Camundongos , Proteínas SNARE/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Fusão de Membrana , Depressão , Sintaxina 1/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas R-SNARE/metabolismo
2.
Hum Mol Genet ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38484778

RESUMO

MUNC18-1 is an essential protein of the regulated secretion machinery. De novo, heterozygous mutations in STXBP1, the human gene encoding this protein, lead to a severe neurodevelopmental disorder. Here, we describe the electrophysiological characteristics of a unique case of STXBP1-related disorder caused by a homozygous mutation (L446F). We engineered this mutation in induced pluripotent stem cells from a healthy donor (STXBP1LF/LF) to establish isogenic cell models. We performed morphological and electrophysiological analyses on single neurons grown on glial micro-islands. Human STXBP1LF/LF neurons displayed normal morphology and normal basal synaptic transmission but increased paired-pulse ratios and charge released, and reduced synaptic depression compared to control neurons. Immunostainings revealed normal expression levels but impaired recognition by a mutation-specific MUNC18-1 antibody. The electrophysiological gain-of-function phenotype is in line with earlier overexpression studies in Stxbp1 null mouse neurons, with some potentially human-specific features. Therefore, the present study highlights important differences between mouse and human neurons critical for the translatability of pre-clinical studies.

3.
Biol Psychiatry ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38490366

RESUMO

BACKGROUND: Pathogenic variants in STXBP1/Munc18-1 cause severe encephalopathies that are among the most common in genetic neurodevelopmental disorders. Different molecular disease mechanisms have been proposed and pathogenicity prediction is limited. This study aims to define a generalized disease concept for STXBP1-related disorders and improve prediction. METHODS: A cohort of 11 disease-associated and five neutral variants (detected in healthy individuals) was tested in three cell-free assays, and in heterologous cells and primary neurons. Protein aggregation was tested using gel filtration and Triton-x-100 insolubility. A machine learning algorithm (PRESR) that uses both sequence- and 3D structure-based features was developed to improve pathogenicity prediction using 231 known disease-associated variants and comparison to our experimental data. RESULTS: Disease-associated, but none of the neutral variants produced reduced protein levels. Cell-free assays demonstrated directly that disease-associated variants have reduced thermostability, with most variants denaturing around body temperature. In addition, most disease-associated variants impaired SNARE-mediated membrane fusion in a reconstituted assay. Aggregation/insolubility was observed for none of the variants in vitro or in neurons. PRESR outperformed existing tools substantially: Matthews correlation coefficient = 0.71 versus <0.55. CONCLUSIONS: These data establish intrinsic protein instability as the generalizable, primary cause for STXBP1-related disorders and show that protein-specific ortholog and 3D information improves disease prediction. PRESR is a publicly available diagnostic tool (PRESR.russelllab.org).

4.
Biol Psychiatry Glob Open Sci ; 4(1): 284-298, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38298782

RESUMO

Background: STXBP1-related disorder (STXBP1-RD) is a neurodevelopmental disorder caused by pathogenic variants in the STXBP1 gene. Its gene product MUNC18-1 organizes synaptic vesicle exocytosis and is essential for synaptic transmission. Patients present with developmental delay, intellectual disability, and/or epileptic seizures, with high clinical heterogeneity. To date, the cellular deficits of neurons of patients with STXBP1-RD are unknown. Methods: We combined live-cell imaging, electrophysiology, confocal microscopy, and mass spectrometry proteomics to characterize cellular phenotypes of induced pluripotent stem cell-derived neurons from 6 patients with STXBP1-RD, capturing shared features as well as phenotypic diversity among patients. Results: Neurons from all patients showed normal in vitro development, morphology, and synapse formation, but reduced MUNC18-1 RNA and protein levels. In addition, a proteome-wide screen identified dysregulation of proteins related to synapse function and RNA processes. Neuronal networks showed shared as well as patient-specific phenotypes in activity frequency, network irregularity, and synchronicity, especially when networks were challenged by increasing excitability. No shared effects were observed in synapse physiology of single neurons except for a few patient-specific phenotypes. Similarities between functional and proteome phenotypes suggested 2 patient clusters, not explained by gene variant type. Conclusions: Together, these data show that decreased MUNC18-1 levels, dysregulation of synaptic proteins, and altered network activity are shared cellular phenotypes of STXBP1-RD. The 2 patient clusters suggest distinctive pathobiology among subgroups of patients, providing a plausible explanation for the clinical heterogeneity. This phenotypic spectrum provides a framework for future validation studies and therapy design for STXBP1-RD.

5.
Mol Psychiatry ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321119

RESUMO

Synaptotagmin-1 (Syt1) is a presynaptic calcium sensor with two calcium binding domains, C2A and C2B, that triggers action potential-induced synchronous neurotransmitter release, while suppressing asynchronous and spontaneous release. We identified a de novo missense mutation (P401L) in the C2B domain in a patient with developmental delay and autistic symptoms. Expressing the orthologous mouse mutant (P400L) in cultured Syt1 null mutant neurons revealed a reduction in dendrite outgrowth with a proportional reduction in synapses. This was not observed in single Syt1PL-rescued neurons that received normal synaptic input when cultured in a control network. Patch-clamp recordings showed that spontaneous miniature release events per synapse were increased more than 500% in Syt1PL-rescued neurons, even beyond the increased rates in Syt1 KO neurons. Furthermore, action potential-induced asynchronous release was increased more than 100%, while synchronous release was unaffected. A similar shift to more asynchronous release was observed during train stimulations. These cellular phenotypes were also observed when Syt1PL was overexpressed in wild type neurons. Our findings show that Syt1PL desynchronizes neurotransmission by increasing the readily releasable pool for asynchronous release and reducing the suppression of spontaneous and asynchronous release. Neurons respond to this by shortening their dendrites, possibly to counteract the increased synaptic input. Syt1PL acts in a dominant-negative manner supporting a causative role for the mutation in the heterozygous patient. We propose that the substitution of a rigid proline to a more flexible leucine at the bottom of the C2B domain impairs clamping of release by interfering with Syt1's primary interface with the SNARE complex. This is a novel cellular phenotype, distinct from what was previously found for other SYT1 disease variants, and points to a role for spontaneous and asynchronous release in SYT1-associated neurodevelopmental disorder.

6.
Cell Rep Med ; 4(12): 101308, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38086378

RESUMO

De novo mutations in STXBP1 are among the most prevalent causes of neurodevelopmental disorders and lead to haploinsufficiency, cortical hyperexcitability, epilepsy, and other symptoms in people with mutations. Given that Munc18-1, the protein encoded by STXBP1, is essential for excitatory and inhibitory synaptic transmission, it is currently not understood why mutations cause hyperexcitability. We find that overall inhibition in canonical feedforward microcircuits is defective in a P15-22 mouse model for Stxbp1 haploinsufficiency. Unexpectedly, we find that inhibitory synapses formed by parvalbumin-positive interneurons were largely unaffected. Instead, excitatory synapses fail to recruit inhibitory interneurons. Modeling confirms that defects in the recruitment of inhibitory neurons cause hyperexcitation. CX516, an ampakine that enhances excitatory synapses, restores interneuron recruitment and prevents hyperexcitability. These findings establish deficits in excitatory synapses in microcircuits as a key underlying mechanism for cortical hyperexcitability in a mouse model of Stxbp1 disorder and identify compounds enhancing excitation as a direction for therapy.


Assuntos
Encefalopatias , Animais , Humanos , Camundongos , Encefalopatias/genética , Encefalopatias/metabolismo , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Mutação , Neurônios/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/genética
7.
J Neurosci ; 43(45): 7616-7625, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37852790

RESUMO

Neuropeptides and neurotrophins, stored in dense core vesicles (DCVs), are together the largest currently known group of chemical signals in the brain. Exocytosis of DCVs requires high-frequency or patterned stimulation, but the determinants to reach maximal fusion capacity and for efficient replenishment of released DCVs are unknown. Here, we systematically studied fusion of DCV with single vesicle resolution on different stimulation patterns in mammalian CNS neurons. We show that tetanic stimulation trains of 50-Hz action potential (AP) bursts maximized DCV fusion, with significantly fewer fusion event during later bursts of the train. This difference was omitted by introduction of interburst intervals but did not increase total DCV fusion. Interburst intervals as short as 5 s were sufficient to restore the fusion capacity. Theta burst stimulation (TBS) triggered less DCV fusion than tetanic stimulation, but a similar fusion efficiency per AP. Prepulse stimulation did not alter this. However, low-frequency stimulation (4 Hz) intermitted with fast ripple stimulation (200 APs at 200 Hz) produced substantial DCV fusion, albeit not as much as tetanic stimulation. Finally, individual fusion events had longer durations with more intense stimulation. These data indicate that trains of 50-Hz AP stimulation patterns triggered DCV exocytosis most efficiently and more intense stimulation promotes longer DCV fusion pore openings.SIGNIFICANCE STATEMENT Neuropeptides and neurotrophins modulate multiple regulatory functions of human body like reproduction, food intake or mood. They are packed into dense core vesicles (DCVs) that undergo calcium and action potential (AP) fusion with the plasma membrane. In order to study the fusion of DCVs in vitro, techniques like perfusion with buffer containing high concentration of potassium or electric field stimulation are needed to trigger the exocytosis of DCVs. Here, we studied the relationship between DCVs fusion properties and different electric field stimulation patterns. We used six different stimulation patterns and showed that trains of 50-Hz action potential bursts triggered DCV exocytosis most efficiently and more intense stimulation promotes longer DCV fusion pore openings.


Assuntos
Vesículas de Núcleo Denso , Neuropeptídeos , Animais , Humanos , Vesículas Secretórias/metabolismo , Neurônios/fisiologia , Hipocampo/fisiologia , Neuropeptídeos/metabolismo , Fatores de Crescimento Neural/metabolismo , Mamíferos
8.
Elife ; 122023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695731

RESUMO

Tomosyn is a large, non-canonical SNARE protein proposed to act as an inhibitor of SNARE complex formation in the exocytosis of secretory vesicles. In the brain, tomosyn inhibits the fusion of synaptic vesicles (SVs), whereas its role in the fusion of neuropeptide-containing dense core vesicles (DCVs) is unknown. Here, we addressed this question using a new mouse model with a conditional deletion of tomosyn (Stxbp5) and its paralogue tomosyn-2 (Stxbp5l). We monitored DCV exocytosis at single vesicle resolution in tomosyn-deficient primary neurons using a validated pHluorin-based assay. Surprisingly, loss of tomosyns did not affect the number of DCV fusion events but resulted in a strong reduction of intracellular levels of DCV cargos, such as neuropeptide Y (NPY) and brain-derived neurotrophic factor (BDNF). BDNF levels were largely restored by re-expression of tomosyn but not by inhibition of lysosomal proteolysis. Tomosyn's SNARE domain was dispensable for the rescue. The size of the trans-Golgi network and DCVs was decreased, and the speed of DCV cargo flux through Golgi was increased in tomosyn-deficient neurons, suggesting a role for tomosyns in DCV biogenesis. Additionally, tomosyn-deficient neurons showed impaired mRNA expression of some DCV cargos, which was not restored by re-expression of tomosyn and was also observed in Cre-expressing wild-type neurons not carrying loxP sites, suggesting a direct effect of Cre recombinase on neuronal transcription. Taken together, our findings argue against an inhibitory role of tomosyns in neuronal DCV exocytosis and suggests an evolutionary conserved function of tomosyns in the packaging of secretory cargo at the Golgi.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Vesículas de Núcleo Denso , Proteínas do Tecido Nervoso , Neurônios , Proteínas R-SNARE , Animais , Camundongos , Evolução Biológica , Complexo de Golgi , Proteínas do Tecido Nervoso/genética , Proteínas R-SNARE/genética , Exocitose
9.
Biol Direct ; 18(1): 22, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37161421

RESUMO

Synapse diversity has been described from different perspectives, ranging from the specific neurotransmitters released, to their diverse biophysical properties and proteome profiles. However, synapse diversity at the transcriptional level has not been systematically identified across all synapse populations in the brain. To quantify and identify specific synaptic features of neuronal cell types we combined the SynGO (Synaptic Gene Ontology) database with single-cell RNA sequencing data of the mouse neocortex. We show that cell types can be discriminated by synaptic genes alone with the same power as all genes. The cell type discriminatory power is not equally distributed across synaptic genes as we could identify functional categories and synaptic compartments with greater cell type specific expression. Synaptic genes, and specific SynGO categories, belonged to three different types of gene modules: gradient expression over all cell types, gradient expression in selected cell types and cell class- or type-specific profiles. This data provides a deeper understanding of synapse diversity in the neocortex and identifies potential markers to selectively identify synapses from specific neuronal populations.


Assuntos
Encéfalo , Redes Reguladoras de Genes , Animais , Camundongos
10.
Sci Rep ; 13(1): 2871, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36806293

RESUMO

The Golgi apparatus is the major sorting hub in the secretory pathway and particularly important for protein sorting in neurons. Knowledge about protein localization in Golgi compartments is largely based on work in cell lines. Here, we systematically compared protein localization of 21 endogenous proteins in the Golgi apparatus of mouse neurons using confocal microscopy and line scan analysis. We localized these proteins by measuring the distance relative to the canonical TGN marker TGN38. Based on this, proteins fell into three groups: upstream of, overlapping with or downstream of TGN38. Seven proteins showed complete overlap with TGN38, while proteins downstream of TGN38 were located at varying distances from TGN38. Proteins upstream of TGN38 were localized in between TGN38 and the cis-/medial Golgi markers Giantin and GM130. This localization was consistent with protein function. Our data provide an overview of the relative localization of endogenous proteins in the Golgi of primary mouse neurons.


Assuntos
Complexo de Golgi , Conhecimento , Animais , Camundongos , Linhagem Celular , Movimento Celular , Neurônios
11.
Cell Rep ; 42(1): 111896, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36596304

RESUMO

Human pluripotent stem cells (hPSCs) are a powerful tool for disease modeling of hard-to-access tissues (such as the brain). Current protocols either direct neuronal differentiation with small molecules or use transcription-factor-mediated programming. In this study, we couple overexpression of transcription factor Neurogenin2 (Ngn2) with small molecule patterning to differentiate hPSCs into lower induced motor neurons (liMoNes/liMNs). This approach induces canonical MN markers including MN-specific Hb9/MNX1 in more than 95% of cells. liMNs resemble bona fide hPSC-derived MN, exhibit spontaneous electrical activity, express synaptic markers, and can contact muscle cells in vitro. Pooled, multiplexed single-cell RNA sequencing on 50 hPSC lines reveals reproducible populations of distinct subtypes of cervical and brachial MNs that resemble their in vivo, embryonic counterparts. Combining small molecule patterning with Ngn2 overexpression facilitates high-yield, reproducible production of disease-relevant MN subtypes, which is fundamental in propelling our knowledge of MN biology and its disruption in disease.


Assuntos
Sinais (Psicologia) , Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular , Neurônios Motores/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Homeodomínio/metabolismo
12.
J Neurosci ; 43(3): 347-358, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36517239

RESUMO

The presynaptic proteins MUNC18-1, syntaxin-1, and SNAP25 drive SNARE-mediated synaptic vesicle fusion and are also required for neuronal viability. Their absence triggers rapid, cell-autonomous, neuron-specific degeneration, unrelated to synaptic vesicle deficits. The underlying cell death pathways remain poorly understood. Here, we show that hippocampi of munc18-1 null mice (unknown sex) express apoptosis hallmarks cleaved caspase 3 (CC-3) and phosphorylated p53, and have condensed nuclei. However, side-by-side in vitro comparison with classical apoptosis induced by camptothecin uncovered striking differences to syntaxin-1 and MUNC18-1 depleted neurons. First, live-cell imaging revealed consecutive neurite retraction hours before cell death in MUNC18-1 or syntaxin-1 depleted neurons, whereas all neurites retracted at once, directly before cell death in classical apoptosis. Second, CC-3 activation was observed only after loss of all neurites and cellular breakdown, whereas CC-3 is activated before any neurite loss in classical apoptosis. Third, a pan-caspase inhibitor and a p53 inhibitor both arrested classical apoptosis, as expected, but not cell death in MUNC18-1 or syntaxin-1 depleted neurons. Neuron-specific cell death, consecutive neurite retraction, and late CC-3 activation were conserved in syntaxin-1 depleted human neurons. Finally, no indications were observed for involvement of other established cell death pathways, including necroptosis, Wallerian degeneration, autophagic cell death, and pyroptosis. Together, these data show that depletion of presynaptic proteins MUNC18-1 or syntaxin-1 triggers an atypical, staged cell death pathway characterized by consecutive neurite retraction, ultimately leading to, but not driven by, apoptosis.SIGNIFICANCE STATEMENT Neuronal cell death can occur via a multitude of pathways and plays an important role in the developing nervous system as well as neurodegenerative diseases. One poorly understood pathway to neuronal cell death takes place on depletion of presynaptic SNARE proteins syntaxin-1, SNAP25, or MUNC18-1. The current study demonstrates that MUNC18-1 or syntaxin-1 depleted neurons show a new, atypical, staged cell death that does not resemble any of the established cell death pathways in neurons. Cell death on MUNC18-1 or syntaxin-1 depletion is characterized by consecutive neurite retraction, ultimately involving, but not driven by, classical apoptosis.


Assuntos
Proteínas SNARE , Proteína Supressora de Tumor p53 , Camundongos , Animais , Humanos , Sintaxina 1/genética , Proteínas SNARE/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Morte Celular , Camundongos Knockout , Ligação Proteica
13.
Mol Psychiatry ; 28(4): 1545-1556, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36385170

RESUMO

Studies using induced pluripotent stem cells (iPSCs) are gaining momentum in brain disorder modelling, but optimal study designs are poorly defined. Here, we compare commonly used designs and statistical analysis for different research aims. Furthermore, we generated immunocytochemical, electrophysiological, and proteomic data from iPSC-derived neurons of five healthy subjects, analysed data variation and conducted power simulations. These analyses show that published case-control iPSC studies are generally underpowered. Designs using isogenic iPSC lines typically have higher power than case-control designs, but generalization of conclusions is limited. We show that, for the realistic settings used in this study, a multiple isogenic pair design increases absolute power up to 60% or requires up to 5-fold fewer lines. A free web tool is presented to explore the power of different study designs, using any (pilot) data.


Assuntos
Encefalopatias , Células-Tronco Pluripotentes Induzidas , Humanos , Proteômica , Estudos de Casos e Controles , Voluntários Saudáveis
15.
Elife ; 112022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459486

RESUMO

Different organelles traveling through neurons exhibit distinct properties in vitro, but this has not been investigated in the intact mammalian brain. We established simultaneous dual color two-photon microscopy to visualize the trafficking of Neuropeptide Y (NPY)-, LAMP1-, and RAB7-tagged organelles in thalamocortical axons imaged in mouse cortex in vivo. This revealed that LAMP1- and RAB7-tagged organelles move significantly faster than NPY-tagged organelles in both anterograde and retrograde direction. NPY traveled more selectively in anterograde direction than LAMP1 and RAB7. By using a synapse marker and a calcium sensor, we further investigated the transport dynamics of NPY-tagged organelles. We found that these organelles slow down and pause at synapses. In contrast to previous in vitro studies, a significant increase of transport speed was observed after spontaneous activity and elevated calcium levels in vivo as well as electrically stimulated activity in acute brain slices. Together, we show a remarkable diversity in speeds and properties of three axonal organelle marker in vivo that differ from properties previously observed in vitro.


Assuntos
Cálcio , Neuropeptídeo Y , Animais , Camundongos , Axônios , Neurônios , Organelas , Mamíferos
16.
Sci Rep ; 12(1): 20870, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460703

RESUMO

Retrograde trafficking towards the trans-Golgi network (TGN) is important for dense core vesicle (DCV) biogenesis. Here, we used Vti1a/b deficient neurons to study the impact of disturbed retrograde trafficking on Golgi organization and cargo sorting. In Vti1a/b deficient neurons, staining intensity of cis-/medial Golgi proteins (e.g., GM130 and giantin) was increased, while the intensity of two recycling TGN proteins, TGN38 and TMEM87A, was decreased and the TGN-resident protein Golgin97 was normal. Levels and localization of DCV cargo markers, LAMP1 and KDEL were also altered. This phenotype was not caused by reduced Golgi size or absence of a TGN compartment. The phenotype was partially phenocopied by disturbing sphingolipid homeostasis, but was not rescued by overexpression of sphingomyelin synthases or the sphingolipid synthesis inhibitor myriocin. We conclude that Vti1a/b are important for distinct aspects of TGN and cis-/medial Golgi organization. Our data underline the importance of retrograde trafficking for Golgi organization, DCV cargo sorting and the distribution of proteins of the regulated secretory pathway.


Assuntos
Complexo de Golgi , Rede trans-Golgi , Transporte Proteico , Movimento Celular , Homeostase
17.
Neuron ; 110(22): 3645-3647, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36395749

RESUMO

In this issue of Neuron, Orr et al.1 demonstrate a detailed molecular cascade that drives presynaptic homeostatic plasticity and enhances presynaptic vesicle fusion in response to reduced postsynaptic activity. Two large presynaptic signaling complexes are central hubs.


Assuntos
Neurônios , Transdução de Sinais , Homeostase/fisiologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia
18.
J Cell Sci ; 135(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36245272

RESUMO

MUNC18-1 (also known as syntaxin-binding protein-1, encoded by Stxbp1) binds to syntaxin-1. Together, these proteins regulate synaptic vesicle exocytosis and have a separate role in neuronal viability. In Stxbp1 null mutant neurons, syntaxin-1 protein levels are reduced by 70%. Here, we show that dynamin-1 protein levels are reduced at least to the same extent, and transcript levels of Dnm1 (which encodes dynamin-1) are reduced by 50% in Stxbp1 null mutant brain. Several, but not all, other endocytic proteins were also found to be reduced, but to a lesser extent. The reduced dynamin-1 expression was not observed in SNAP25 null mutants or in double-null mutants of MUNC13-1 and -2 (also known as Unc13a and Unc13b, respectively), in which synaptic vesicle exocytosis is also blocked. Co-immunoprecipitation experiments demonstrated that dynamin-1 and MUNC18-1 do not bind directly. Furthermore, MUNC18-1 levels were unaltered in neurons lacking all three dynamin paralogues. Finally, overexpression of dynamin-1 was not sufficient to rescue neuronal viability in Stxbp1 null mutant neurons; thus, the reduction in dynamin-1 is not the single cause of neurodegeneration of these neurons. The reduction in levels of dynamin-1 protein and mRNA, as well as of other endocytosis proteins, in Stxbp1 null mutant neurons suggests that MUNC18-1 directly or indirectly controls expression of other presynaptic genes.


Assuntos
Dinamina I , Proteínas Munc18 , Dinamina I/genética , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Sintaxina 1/genética , Sintaxina 1/metabolismo , Neurônios/metabolismo , Exocitose/fisiologia
19.
EMBO J ; 41(16): e110501, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35791631

RESUMO

Proteostasis is essential for cellular survival and particularly important for highly specialised post-mitotic cells such as neurons. Transient reduction in protein synthesis by protein kinase R-like endoplasmic reticulum (ER) kinase (PERK)-mediated phosphorylation of eukaryotic translation initiation factor 2α (p-eIF2α) is a major proteostatic survival response during ER stress. Paradoxically, neurons are remarkably tolerant to PERK dysfunction, which suggests the existence of cell type-specific mechanisms that secure proteostatic stress resilience. Here, we demonstrate that PERK-deficient neurons, unlike other cell types, fully retain the capacity to control translation during ER stress. We observe rescaling of the ATF4 response, while the reduction in protein synthesis is fully retained. We identify two molecular pathways that jointly drive translational control in PERK-deficient neurons. Haem-regulated inhibitor (HRI) mediates p-eIF2α and the ATF4 response and is complemented by the tRNA cleaving RNase angiogenin (ANG) to reduce protein synthesis. Overall, our study elucidates an intricate back-up mechanism to ascertain translational control during ER stress in neurons that provides a mechanistic explanation for the thus far unresolved observation of neuronal resilience to proteostatic stress.


Assuntos
Fator de Iniciação 2 em Eucariotos , eIF-2 Quinase , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Neurônios/metabolismo , Fosforilação , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
20.
BMC Psychiatry ; 22(1): 452, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35799144

RESUMO

BACKGROUND: Bumetanide is a selective NKCC1 chloride importer antagonist which is being repurposed as a mechanism-based treatment for neurodevelopmental disorders (NDDs). Due to their specific actions, these kinds of interventions will only be effective in particular subsets of patients. To anticipate stratified application, we recently completed three bumetanide trials each focusing on different stratification strategies with the additional objective of deriving the most optimal endpoints. Here we publish the protocol of the post-trial access combined cohort study to confirm previous effects and stratification strategies in the trial cohorts and in new participants. METHOD/DESIGN: Participants of the three previous cohorts and a new cohort will be subjected to 6 months bumetanide treatment using multiple baseline Single Case Experimental Designs. The primary outcome is the change, relative to baseline, in a set of patient reported outcome measures focused on direct and indirect effects of sensory processing difficulties. Secondary outcome measures include the conventional questionnaires 'social responsiveness scale', 'repetitive behavior scale', 'sensory profile' and 'aberrant behavior scale'. Resting-state EEG measurements will be performed at several time-points including at Tmax after the first administration. Assessment of cognitive endpoints will be conducted using the novel Emma Tool box, an in-house designed battery of computerized tests to measure neurocognitive functions in children. DISCUSSION: This study aims to replicate previously shown effects of bumetanide in NDD subpopulations, validate a recently proposed treatment prediction effect methodology and refine endpoint measurements. TRIAL REGISTRATION: EudraCT: 2020-002196-35, registered 16 November 2020, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-002196-35/NL.


Assuntos
Bumetanida , Transtornos do Neurodesenvolvimento , Bumetanida/farmacologia , Bumetanida/uso terapêutico , Criança , Estudos de Coortes , Humanos , Transtornos do Neurodesenvolvimento/tratamento farmacológico , Projetos de Pesquisa , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...